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Isothermic growth of one spherulite around circular 
obstacles in a polypropylene foil 
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Growth of one spherulite within a thin foil of polypropylene around one circular obstacle or 
around combinations of circular obstacles is investigated. For each obstacle there exists 
a region of shadow, seen from the nucleus of the spherulite, which influences the growth of 
the spherulite. Within any region of shadow the growth fronts are evoivents of the obstacle's 
boundary, because the spherulite grows isotropically. When two growth fronts belonging to 
one spherulite meet each other inside the shadow, an intrinsic grain boundary is formed for 
each obstacle. Additionally, growth of one spherulite around a rectangular obstacle and 
a spherical obstacle is investigated. 

1. Introduction 
1.1. Spherulitic growth of isotactic 

polypropylene 
An undercooled melt of polypropylene crystallizes by 
spherulitic growth. In this paper crystallization is 
studied in a foil of isotactic polypropylene (iPP) in the 
presence of obstacles. The used polymer possesses an 
isotacticity of 96%, a mean molecular weight, M,~, of 
300000 and a thickness of 4 gm and contains neither 
stabilizers nor fillers. This foil melts at about 168 ~ 
This foil is put on a slide and temperature is increased 
at a heating rate of 10 ~ rain-1 to 200 ~ in an Na 
inert atmosphere to avoid thermo-oxidation. The temp- 
erature then is reduced to 132~ for isothermal crys- 
tallization. In the supercooled melt at 132~ some 
nuclei of the a modified iPP are formed which start to 
grow circularly and simultaneously as a spherulites 
[13. 

In the metastable molten foil at 132 ~ the ~-modifi- 
cation spherulite grows at a constant growth rate of 
c a = 3.3 gmmin -1. The growth rate is reduced to 
about 0.3 gmmin -1 at 144~ This effect is used for 
production of thermic marks or time marks at equidis- 
tant time intervals. Therefore, after crystallization at 
132~ for 15rain the temperature is increased as 
quickly as possible from 132 to 144 ~ This leads to 
a reduction of growth rate. After 4 min at 144 ~ the 
temperature of the foil is again decreased to 132 ~ tor 
15 rain. This cycle is repeated as often as necessary. 
One obtains circular marks with different grey shad- 
ing (Fig. 1), because the crystallinity of these marks is 
greater than that of the surrounding crystallized ma- 
terial. The marks show the run of the growth fronts at 
the chosen points of time 1-2]. 

Fig. 2 shows a schematic drawing of an undisturbed 
growing spherulite with the nucleus in its centre. The 
limiting circle between spherulite and undercooled 
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melt is called the growth front. The two circular marks 
in the interior of the spherulite are called thermic 
marks or time marks. The radial rays from the nucleus 
to the growth front are called growth lines. The infi- 
nite number of growth lines is approximately 
described by the fibrils in the experiment. An exact 
description of the growth lines by the fibrils is not 
possible because of small-angle branching on the tip of 
the fibrils [3-53. The growth lines always lie perpen- 
dicular to the growth fronts; they are orthogonal tra- 
jectories. 

An isothermally crystallizing spherulite grows cir- 
cularly because of the isotropy of spherulitic growth. 
Every point on the growth front of the spherulite is at 
the same distance, r, to the nucleus, r is only given by 
the growth rate, c, and the time of growth, t. In other 
words, all growth lines have the same and shortest 
length, r, at the same moment, t. Obviously, this de- 
scribes a circle when spherulitic growth is undistur- 
bed. 

For  a theoretical description one can treat the 
spherulites in the thin foil as nearly two-dimensional 
aggregates. This is so because foil with a thickness of 
4 gm is thin compared to the mean spherulite dia- 
meter of 100 gm or more. So, one can use analytical 
two-dimensional geometry or differential planar curve 
geometry [61. 

1.2. Spherulitic growth in the presence of 
obstacles 

The situation of Fig. 1 is different in the presence of 
obstacles. These obstacles are static and unmovable. 
Fig. 3 shows the experimental result of the growth of 
one spherulite around one circular obstacle. The nu- 
cleus lies on the right side of the obstacle. O n e  ob- 
serves deformation of the growth fronts in a region of 
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Figure i A circularly growing spherulite of c~-modified isotactic 
polypropylene at 132~ In the interior of the spherulite three 
equidistant time marks set after every 15rain of isothermal 
crystallization can be found. The grain is completely surrounded by 
amorphous melt. 

, \ / . . . . . . . . . . . .  G r o w t h  l i n e  

" \ / " . . . . . . . .  G r o w t h  f r o n t  

. . . . . . . . .  .ue,eus 

Amorphous melt 

Figure 2 Schematic drawing of a circularly growing spherulite 
completely surrounded by amorphous melt with the nucleus in its 
centre. One realizes the run of the growth front, two thermic marks 
and a number of growth lines. 

propylene foil. The foil is prepared according to the 
above given heat treatment. Then, a circular hole is 
made using a watchmaker's lathe, with which a pin of 
the desired diameter is made and suitably ground. 
Using this tool the hole is cut directly. After annealing 
some degrees below the melting point, the whole foil is 
covered at 20 ~ with a suitable transparent glue in 
order to obtain a stable hole shape during the follow- 
ing heat treatment. The temperature is increased .from 
20 ~ at 3 ~ rain- 1 to 185 ~ This melt temperature 
is reduced by 10~ -1 to 132~ where some 
nuclei appear and start their growth. Sometimes the 
desired case is realized: one spherulite may lie near to 
the hole and has the possibility of growing around it, 
while all other spherulites that may form or that will 
appear at later points of time as "stragglers" may be 
sufficiently distant not to disturb this process. 

For  the case of one spherulite growing around an 
obstacle, the description of growth has to be modified 
partly. The growth lines are not allowed to pass 
through the interior of the obstacle, since there is no 
polymer melt. The consequence is that a growth 
shadow has to be taken into consideration. This 
growth shadow is defined by all areas that cannot be 
reached by a straight gr6wth line outgoing from the 
nucleus, which is typical for undisturbed isothermal 
spherulitic growth. 

The basic principle for description of the growth 
front inside the shadow region is the isotropy of 
spherulitic growth. Each point on the growth front at 
point of time, t, has the same and shortest distance to 
the nucleus. 

Outside the shadow this principle leads to circular 
growth as mentioned above. 

Inside the shadow the run of the growth front is 
exactly described by an imaginary, inextensible and 
stretched thread which unwinds the obstacle's bound- 
ary. The constructed curve is called evolvent in mathe- 
matics. The run of the thread itself defines the run of 
the growth lines inside the shadow. The unwound 
curve, in this case the circular obstacle, is called 
evolute in mathematics [7, 8]. One notes that the 
growth fronts are always perpendicular to the growth 
lines. 

A second consequence of the existence of the ob- 
stacle is the necessary appearance of an intrinsic grain 
boundary [9, 10]. 

Figure 3 A spherulite growing around a circular obstacle. For 
photography, circularly polarized light was used and equidistant 
time marks were set. The diameter of the obstacle is 170 • 3 ~ma. 
The nucleus is placed at the right side of the obstacle. On the left 
side, opposite to the nucleus, an intrinsic grain boundary can be 
seen. 

shadow behind the obstacle and the appearance of an 
intrinsic grain boundary. The deformation of growth 
fronts can easily be seen by the run of time marks and 
fibrils. 

During experimentation, such an obstacle is realiz- 
ed by producing a circular hole cut into the poly- 
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2. Discussion 
2.1. One circular obstacle 
2. 1. 1. Basic cons ide ra t i ons  
Now apply the concept of constructing an evolvent to 
the growth of one spherulite around one circular ob- 
stacle as shown in Fig. 3. Fig. 4 shows the growth 
shadow caused by  one circular obstacle. The shadow 
is separated into an upper and a lower half because of 
the high symmetry of this case. The nucleus is posi- 
tioned at A, a circular obstacle with radius R is centred 
at B. The distance between nucleus and centre of the 

circular obstacle is d = AB. The growth rate of the 
spherulite equals c. This also is valid inside the shadow 



L o w e r  s h a d o w  ~ T 

:~ Nucleus 1 
/ A /- /- 

" 2  
/ A 

J 

Upper  shadow ~ T 

Figure 4 Schematic drawing of the gro~vth shadow at a circular 
obstacle. Its centre is at B, and the nucleus lie at A. The upper and 
the lower part of the shadow both begin at T. Beginning at I, there 
runs an intrinsic grain boundary separating both parts of the 
shadow. 

Figure 6 Construction of an evolvent of a circle inside the shadow 

region. A thread with length, 1 = T N  is fixed at T and used for 
description of the run of the growth front. 

/ 
/ A 

Figure 5 The run of one growth front belonging to a thread length, 

1 = TN with a number of growth lines between their end points, N' 
and N", in both parts of the shadow. 

because of isotropy. The radius of growth then is 
r = c t  at time of growth, t. 

Undisturbed and circular ~pherulitic growth ends at 
point of time 

d - R  
to  - (1 )  

C 

The beginning of the growth shadow is marked by 
points T where the direction of growth of the 
spherulite is tangential to the obstacle's boundary. 
The shadow limits are tangents to the circle passing 
through the nucleus, A. It  holds 

(d 2 - -  R2)l /2  
tx - (2) 

C 

For  to ~< t < t T the growth fronts are circular arcs 
ending on the obstacle's boundary. For  t ~> t T the 
growth fronts a r e  evolvents of a circle inside the 
shadow which are continued by circular arcs around 
A outside the shadow. This is shown schematically in 
Fig. 5 [9]. 

centre of the co-ordinate system is positioned in the 
centre of the circle, B. This derivation is only demon- 
strated for the upper half because of symmetry. The 
tangential point, T, now possesses the co-ordinates 

XT = RCOSCpT 

YT = R sin q)T (3) 

with 
_ I R  

(Px = cos d 

In T, one fixes the imaginary inextensible and 
stretched thread describing the run of the growth 
fronts inside the shadow. The thread has a length of 

I ( t )  T N  = c ( t  - t x )  (4) 

N is a point of this growth front. For  construction one 
uses a parameter,  ~, describing the angle between 
points T and M of Fig. 6. The growth line runs along 
the circular arc between T and M and then, between 
M and N, in the direction of the tangent to the circle in 
M, up to point N belonging to the growth front. The 
total length of these two parts is l. Thus, 1 indicates one 
evolvent out of an infinite family of parallel curves, 
while any point on a special evolvent can be reached 
by variation of ~. Total  length, l, is an addition of these 
two lengths 

and 

with 

ll = T M  = R~ 

12 = M N  = 1 - 1 1  = I - R ~  

1 = 11 + 12 

The angle of the slope, ~//~, of a tangent to the circular 
arc in M amounts  to 

7I 
= e,-  + o~ - ~ (5) 

2. 1.2. Mathematical  derivation of evolvent 
For  constructing the evolvent of the circular obstacle 
for points of time, tT ~< t < t i ,  one uses Fig. 6. The 

Thus, the co-ordinates of M are 

XM = RCOS(CpT + a) 

YM = Rsin(cpx + a) 
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Point N is reached from M when following the tan- 
gent in M to the circle. It yields 

XN -- XM -- 12COS 

YN-- YM -- 12sinY~ 

According to this calculation one obtains as represen- 
tative for all points on an evolvent of length, l, in 
cartesic co-ordinates by use of parameter a 

X N ( / , a  ) = R COS(@ T @ a)  - -  (I - -  R a ) s i n ( o p T  + a) 

yN(l,a) = Rsin(@T + a) + (1-- Ra) COS(CpT + a) 

(6) 

The parameter a becomes a maximum when the comp- 
lete length, l, is unwound on the circle's boundary, 
thus l = Ram. So, the permitted values for a are 

d --- "" A 

Figure 7 Schematic drawing for constructing the run of the intrinsic 
grain boundary using the angle ~. The length of the thread here is 

l = TJ. 

l 
0 ~< a < - -  = am (7) 

R 

The growth lines are always perpendicular to the 
growth front, they are orthogonal trajectories of the 
growth front. Fig. 5 shows an example of the run of 
one growth front between their end points, N'  and N' ,  
inside the shadow with a number of corresponding 
growth lines. 

The length, s, of the growth front between N' and 
N" is obtained by integration over the element of arc 
which can be expressed by parametric representation 
[XN(a), y N ( a ) ] .  One obtains 

S ~ ~m 

1 2 
= ~ Ram 

[ .~2(a)  q- ) ) ~ ( a ) d a  1/2 ] 

(l - Ra )  d a  

1 12 

2 R  

A 

Figure 8 Reduction of the angle cr between the growth directions of 
the spherulite at the intrinsic grain boundary ~with increasing 
distance from the obstacle. The intrinsic grain boundary gets less 
and less pronounced. 

angle ~/2 equals the slope of tangent, ~/F. The relation 
between the maximal angle, am, used for description of 
the run of the growth front and the angle cs is 

~(t) 
- @T  + am(t) - ~/2 

2. 1.3. The intrinsic grain boundary 
When growth reaches point I of Fig. 7, the formation 
of an intrinsic grain boundary begins. Here, two 
branches of the growth front, having grown around 
the obstacle in different directions, meet for symmetri- 
cal reasons. The intrinsic grain boundary must be 
a straight line. It yields for point I 

OpT + ar = rc and Ix = R a I .  

The growth front reaches I at point of time 

R 
t I ~ t T + --(71; - -  @T) (8) 

C 

Since yields rc ~> ~(t) > 0 depending O n the position of 
J, one obtains rc - (PT ~> am > re/2 -- OpT as possible 
values for am. a has to be varied between 0 and am for 
description of the run of the growth front between the 
shadow limit and the intrinsic grain boundary. 

Using I2 = M J, one obtains the relation between 
~(t) and growth time, t 

cr(t) 12 
cot 

2 R 

Using c(q - tT) = R(~ -- OPT), it yields 

R V cy(t) ~( , )  ~] 
t = t, + c / C ~  + 5~ (9) 

L z 2 

So, formation of the intrinsic grain boundary takes 
part for t~ ~< t < oo. The lengths of the thread are 
l ~> l~. For  describing the formation of the intrinsic 
grain boundary one uses an angle, ~, between the two 
growth directions at the intrinsic grain boundary 
(Figs 7 and 8). The growth direction is given by the 
tangent to the circle passing through point J on the 
intrinsic grain boundary. The limiting cases for ~s are 
( Y ( t i )  = T{~ and limt~ ~ (y(t) = 0. According to Fig. 7, the 

This relation is implicit and cannot be solved for c~. 
Fig. 8 shows the reduction of angle ~ with increasing 
distance from the obstacle. The intrinsic grain bound- 
ary gets less and less pronounced. 

The length k(t) = IJ of the intrinsic grain boundary 
is deduced from 

c~ I2 
COS 

2 /~ +k 
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~dt  

Figure 9 Calculation of the rate of formation, u, of the intrinsic 
grain boundary out of the direction of growth of a spherulite with 
growth rate, c. 

Figure 10 A complete description of one spherulite growing around 
a circular obstacle. Some growth lines, equidistant time marks and 
the intrinsic grain boundary are shown. 

boundary, one will expect the appearance of two in- 
trinsic grain boundaries at growth around two ob- 
stacles. 

2.2.  1. Two circles with the same radi i  
Fig. 11 shows an example of one spherulite growing 
around a combination of two circular obstacles of the 
same size with characteristic formation of two intrin- 
sic grain boundaries as the experimental result. 

Fig. 12 shows a schematic drawing of this situation. 
Regard two points, one and two, which are the centres 
of two circles with radius, R. The two centres have 
a distance of 3R. The nucleus in point A is exactly 
arranged on an arc of a circle around point one with 
a radius of 2R. a is the angle between the straight line 
that connects the two centres of the circles, one and 
two, and the straight line that connects the centre of 
circle one and the nucleus in A. Possible values for 

are between cx = 0 and 138.59 ~ because of symmetry 
as Fig. 12 shows. 

Both intrinsic grain boundaries are straight lines 
beginning on the boundary of the corresponding ob- 
stacle. These two intrinsic grain boundaries can pos- 
sess different directions of growth which causes an 

One obtains 

I'  1 k(cr) = R sin(~/2) 1 (10) 

The rate of formation, v, of the intrinsic grain bound- 
ary is 

v(t) 

which gives 

dk 8k ~c~ ~k 1 

dt Ocy at ~c5 (~t /~)  

c 
v ( ~ )  - (~ i )  

cos(o/2) 

with possible values oo ~> v ( ~ ) >  c. This result can 
also easily be seen using Fig. 9. Expressed by the 
length of the intrinsic grain boundary, one obtains 

c c(k + R) 
~,( k ) - 

cos[cr(k)/2] (k 2 + 2kR) 1/2 

Fig. 10 shows the complete growth of one spherulite 
around one circular obstacle summarizing all presen- 
ted considerations. The identity between theoretical 
description and experiment of Fig. 3 is convincing. 

2.2. Two circular obstacles 
Now investigate how one spherulite grows around 
combinations of two circular obstacles of the same 
and of different size. Since each growth around one 
obstacle causes the appearance of one intrinsic grain 

Figure 11 One spherulite is growing around two circular obstacles 
of the same size with a diameter of 110 _+ 3 ~tm. Circularly polarized 
light was used for photography. The nucleus of the spherulite is 
placed at the right side of this combination of obstacles. The 
equidistant time marks and two intrinsic grain boundaries with the 
same slope can be recognized. 

@ 
13~ 

0 ~ 

Figure 12 Two circular obstacles with radius, R, and centres at 
points one and two, respectively, have a distance of 3R. The nucleus 
at A lies at a distance of 2R to the centre of circle one. The angle ~ is 
shown. 

667 



(a) 

\ 

J 

b) 
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Figure 13 Eight basic possibilities of combining two circular obstacles of the same size when one single spherulite is growing around them. 
The position of the nucleus is marked by a point. Each of the combinations (a-h) possesses a characteristic run of the limitations of the 
shadow regions at both obstacles and of the two appearing intrinsic grain boundaries. 
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Figure 14 The difference in direction between the two intrinsic 
grain boundaries, 13, as a function of ct. For better comparison, the 
letters (a-h) mark the values or regions of values for ~ of the 
corresponding drawings of Fig. 13. 

2 ~:lP 

/ 
/ 

(c) 

Figure I5 Three basic possibilities of growth shadow formation at 
two circular obstacles of different size. The nucleus, marked by the 
point on the right side, and the centres of the two obstacles lie on 
one straight line. The limitations of the regions of shadow and the 
intrinsic grain boundaries are drawn. 

With increasing distance from the obstacle a very 
small deviation from the straight line is possible if the 
intrinsic grain boundary intersects a limitation of the 
shadow region. This deviation has been neglected. 

2.2.2. Two circles with different radii 
Here one only investigates the completely symmetric 
case, with the nucleus and two centres of the obstacles 
lying on one straight line. The possible combinations 
contain all basic considerations for extending the pre- 
sented concept to asymmetric cases as shown in Fig. 13. 

One has to divide the concept into three basic cases, 
as shown in Fig. 15a-c. In each case the intrinsic grain 
boundary that is formed by evolvents of the first 
obstacle begins its growth on the boundary of the first 
obstacle and ends on the boundary of the second 
obstacle. This is not true for case (c) where the first 
intrinsic grain boundary consists of two parts, namely 
a first part between the two obstacles and a second 
part from P to infinity. 

In each case the second intrinsic grain boundary 
begins its growth on the boundary of the second 
obstacle and ends in infinity. This is not true for case 
(c) where the second intrinsic grain boundary ends at 
point P. Of course, P cannot be seen in the experiment. 

2.3. G r o w t h  a r o u n d  more  than  t w o  c i rcu la r  
obstac les  

Since the growth of one spherulite around one ob- 
stacle causes the appearance of one intrinsic grain 
boundary, one obtains for two, three, four . . . . .  circu- 
lar obstacles the number of two, three, four . . . .  , in- 
trinsic grain boundaries, respectively. 

Fig. 16 shows an arrangement of four circular ob- 
stacles of the same size. One spherulite is growing 
around these obstacles. The nucleus is placed at the 
lower right side of the obstacles. There are four 
straight intrinsic grain boundaries, each beginning a( 
one of the circular obstacles. This picture 
demonstrates how to build up more complex 

angle ]3 between these directions. The correlation bet- 
ween the angles ~ and 13 is graphically shown in 
Fig. 13a-h. This figure shows eight basic possibilities 
of arranging the two circular obstacles and the nu- 
cleus. Additionally, they show the run of the intrinsic 
grain boundaries and of the limitations of the shadow 
regions. 

Fig. 14 shows the angle [3 as a function of angle ~ as 
a result of computer calculation. The eight cases of 
Fig. 13 are marked by the corresponding letters. 

Figure 16 One spherulite is growing around an arrangement of four 
circular obstacles with a diameter of 60 _+ 3 gm each. The nucleus is 
lying in the lower right corner. A second grain growing at the top 
cannot disturb the process of overgrowing. Circularly polarized 
light was used for photography. Equidistant time marks and four 
straight intrinsic grain boundaries can be seen. 

669 



structures out of a few basic units like, in this case, 
growth around one or two circular obstacles. 

3. Conclusions 
It has been demonstrated that in the presence of ob- 
stacles a growth shadow must be taken into considera- 
tion when investigating spherulitic crystallization pro- 
cesses. Withiri the shadow region, the growth fronts 
can be described as evolvents of the obstacle. An 
intrinsic grain boundary will appear after each growth 
around an obstacle. The basic concept for these con- 
siderations is the isotropic spherulitic growth. 

Although circular obstacles were used for demon- 
stration, the given considerations are independent of 
the special shape of the obstacle. 

A similar concept is used for description of the 
formation of a common grain boundary between two 
growing spherulites with different growth rates 
[6, 11~]. 

Appendix 
A1. A rectangular obstacle 
The presented concept can easily be extended to arbit- 
rary shapes of the obstacle. Use the example of a rec- 
tangular obstacle ]-101. Fig. A1 shows the 
experimental result, with typical deformation of 
growth fronts inside the shadow region and the 
appearance of one intrinsic grain boundary. 

Fig. A2 shows a schematic drawing for describing 
the growth of one spherulite around a rectangular 
obstacle with the nucleus placed at point A. In this 
case, one has to separate different shadow regions 
which all originate in one of the four corners K, L, M, 
N, of the rectangle. The limits of the regions of shadow 
are named k, l, m, n. 

The construction of evolvents leads to growth 
fronts which are always arcs of a circle, but with 
different centres of curvature. Outside the shadow, the 
centre of curvature of the growth fronts is the position 
of the nucleus, A. Inside each region of shadow, how- 
ever, the centre of curvature of the growth fronts 

Figure A1 One spherulite growing around a rectangular obstacle. 
Circularly polarized light was used for photography. The obstacle 
has a length of 100 + 3 gm and a height of 160 + 3/am. The nucleus 
is placed exactly on the right edge of this obstacle. At every 15 min 
of crystallization at 132 ~ a thermic mark ~vas set. 
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FigureA2 Schematic description of one spherulite growing around 
a rectangular obstacle. The nucleus is placed at A. At each corner of 
the obstacle, K, L, M, N, one limit of a region of shadow, k, l, m, n, 
originates. Inside each shadow region the growth fronts are circular 
arcs with centres of curvatures in the corresponding corners. This 
fact is underlined by different line types of the shown growth fronts 
at characteristic points of time. At I, the growth of an intrinsic grain 
boundary as hyperbola begins. At J, when the intrinsic grain 
boundary intersects the limit of shadow, n, a second and different 
branch of a hyperbola with the same tangent at J is formed. 

inside this part of the shadow is the corresponding 
corner of the rectangular obstacle. Whenever the 
growth front reaches a corner, a new region of shadow 
is entered. This fact is underlined by drawing a set of 
growth fronts with different line types in each shadow 
region of Fig. A2. 

Beginning in I, an intrinsic grain boundary is for- 
med. It has the shape of a hyperbola, which can easily 
be obtained from its geometric definition. Each point 
on the hyperbola possesses a constant difference of 
distance to the foci N and M. Beginning in J, a hyper- 
bola with foci L and M, but with the same tangent at J, 
can be observed when the intrinsic grain boundary 
intersects the limit, n, between two regions of shadow. 

A2. Growth around a spherical inclusion 
To apply the two-dimensional considerations present- 
ed in this paper to the three-dimensional case of 
growth around a spherical inclusion instead of a circu- 
lar obstacle, one uses rotational symmetry according 

to the axis AB. It is easy to imagine the shape of 
growth fronts. The spherulite grows spherically in the 
regions outside the (now three-dimensional) shadow. 
Inside the shadow the growth fronts are deformed 
because of growth around the spherical inclusion. The 
growth fronts are always perpendicular to the border 
of the inclusion. The one-dimensional intrinsic grain 
boundary in the two-dimensional region of shadow 
now becomes a one-dimensional channel in the 
three-dimensional shadow region. This one-dimen- 
sional channel appears because the intrinsic grain 
boundary is part of the rotational axis. 

Therefore each spherulite that is growing undistur- 
bed by other spherulites around a spherical inclusion 
possesses a channel directly. The channel damages 
some properties of the polymer, e.g. bond strength, 
corrosion rate and breakdown voltage. 
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